
OC.doc

OC.doc ii

COLLABORATORS

TITLE :

OC.doc

ACTION NAME DATE SIGNATURE

WRITTEN BY January 17, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

OC.doc iii

Contents

1 OC.doc 1

1.1 OC.doc . 1

1.2 What is OC? . 2

1.3 Distribution and Copyright . 2

1.4 System requirements . 3

1.5 Running OC from the CLI . 3

1.6 Running OC from the Workbench . 5

1.7 Running OC from the FPE utility . 5

1.8 Language extensions supported by the compiler . 5

1.9 Escaped characters . 6

1.10 Pointer variants . 6

1.11 Assignable procedures . 7

1.12 Amiga library functions . 8

1.13 The pseudo-module SYSTEM . 9

1.14 Data types . 10

1.15 Memory management . 11

1.16 Memory access . 11

1.17 Logical operations . 11

1.18 Inline machine code . 12

1.19 Miscellaneous . 12

1.20 Module SYSTEM Reference . 12

1.21 Controlling the compiler with switches . 14

1.22 Copying open arrays . 15

1.23 Index checking . 15

1.24 Addressing global variables . 15

1.25 Checking memory allocations . 16

1.26 Portable code . 16

1.27 Range checking . 16

1.28 Type checking . 17

1.29 Overflow checking . 17

OC.doc iv

1.30 Zeroing variables . 17

1.31 Using the garbage collector . 17

1.32 Handling run-time errors . 19

1.33 Error reports produced by the compiler . 19

1.34 Implementation of basic types . 19

1.35 Limits built in to the compiler . 20

1.36 Who is responsible for THIS? . 21

1.37 Reporting bugs and suggestions . 21

1.38 Who did what and why . 22

1.39 Release history . 22

OC.doc 1 / 23

Chapter 1

OC.doc

1.1 OC.doc

$RCSfile: OC.doc $
Description: Documentation for the Oberon-A compiler

Created by: fjc (Frank Copeland)
$Revision: 3.1 $

$Author: fjc $
$Date: 1994/05/19 23:37:30 $

Copyright © 1994, Frank Copeland.
__

Description
What is OC?

Distribution
Copyright and distribution

Requirements
What do I need to run OC

Running OC...

From the CLI
Running OC from the CLI

From the Workbench
Running OC from the Workbench

From FPE
Running OC from the FPE utility

Oberon-2 The programming language Oberon-2

Extensions
Language extensions supported by the compiler

Module SYSTEM

OC.doc 2 / 23

The pseudo-module SYSTEM

Compiler switches
Controlling the compiler

Garbage collection
Using the garbage collector

Run time errors
Handling run-time errors

Error reports
Error reports from the compiler

Basic types
Implementation of basic types

Compiler limits
Limits built in to the compiler

The Author
Contacting the author

Bugs & Suggestions
Reporting bugs and suggestions

Acknowledgements
Who did what and why

Changes Changes since the last release
To Do Bugs to fix and improvements to make

Release history
The history of OC

1.2 What is OC?

OC is a (fairly) fast single pass compiler that directly generates
MC68000 machine code. The object files it produces are in standard
AmigaDOS format and are linkable with BLink.

The compiler translates source code written in the Oberon-2 language
described in the Oberon-2 Report by Niklaus Wirth and Hanspeter
Mössenböck. It also supports a number of compiler options and language
extensions that allow direct access to the Amiga operating system
without messy assembler "glue code".

1.3 Distribution and Copyright

OC is part of Oberon-A and is:

OC.doc 3 / 23

Copyright © 1993-1994, Frank Copeland

Parts of OC are based on source code developed at ETH Zuerich.
Permission to use, copy, modify and distribute this software is granted
by ETH (see the file ETH-Copyright.txt).

See Oberon-A.doc for its conditions of use and distribution.

1.4 System requirements

To use OC requires an Amiga personal computer with at least 1 MB ←↩
of RAM,

running Kickstart version 1.3 or greater. Depending on the module being
compiled, up to 500K of free RAM must be available to run the program. A
conscious effort has been made to make sure that OC will run under
Kickstart 1.3, but it was developed under Kickstart 2.04 and it was not
possible to test this. It is likely that at some future date OC will
require Kickstart 2.04 or greater. If this is a problem for you, please
contact

the author
.

A linker is needed to create executable programs from the object files
generated by the compiler. A freely-distributable linker, BLink, is
included in the Oberon-A archive. The ALink linker, available from
Commodore, should also work (it has not been tested). Other
third-party linkers such as PhxLink may also be suitable.

1.5 Running OC from the CLI

Usage: OC {option} {<filename>}

Options: NS | NEWSYMFILE
DEBUG
VERBOSE
BATCH
{SYM | SYMBOLS <directory>}
DST | DESTINATIONS <directory>

Purpose: To translate an Oberon-2 source text into MC68000
machine code.

Path: Oberon-A/C/OC

OC can be operated in three modes: interactive, command line and batch.

If no filename is given in the arguments passed to OC, it will enter
interactive mode and repeatedly prompt the user for the name of a file
to be compiled. It will exit when the user presses <enter> in response
to the prompt. If a name is entered, it will attempt to compile that
file.

OC.doc 4 / 23

If the BATCH argument is passed to OC and one or more filenames have
been specified it will enter batch mode. In batch mode OC will attempt
to open all the files passed as arguments and interpret their contents
as the names of files to be compiled.

If one or more filenames are given and the BATCH keyword is omitted, OC
will attempt to compile the files named in the command line.

OC skips anything in a source file before the first "MODULE" symbol. If
there isn’t one, it will scan the whole file before reporting an error.
This feature allows the programmer to include a header in the file which
may be meaningful to another translator. For instance, the file might
start with a sequence of commands that the AmigaDOS Execute command can
interpret as commands to compile and link the module contained in the
file.

If any errors are detected, their location and description are output in
the file "<module>.err" in the current directory. If there are no
errors, an object file (containing machine code, data and relocation
information) is output in the current directory, with a name consisting
of the name of the module specified in the text plus a ".Obj"
extension.

If the compiler cannot find a symbol file for the module, it will output
one in the current directory. A symbol file contains information about
the constants, types, variables and procedures exported by a module and
is used by the compiler if the module is imported by another module. If
the NEWSYMFILE option is specified and the module’s definition has been
changed, the compiler will replace the existing symbol file. If the
module’s definition has changed and NEWSYMFILE is NOT specified, an
error (obsolete symbol file) is reported. The symbol file’s name
consists of the module name plus a ".Sym" extension.

When searching for symbol files, the compiler will look in the current
directory first. If any SYMBOL parameters have been specified, it will
then search those directories in the order they have been given. If
unsuccessful, it will search "OLIB:". If a DESTINATION parameter is
specified, the compiler will output any object and symbol files it
generates in the specified directory instead of in the current
directory. With both SYMBOL and DESTINATION parameters, the path must
end in a "/" or ":" character.

If the DEBUG parameter is specified, the compiler will generate symbol
hunks containing the names of all procedures and other objects in the
module. These hunks are for the benefit of third-party debuggers. To
exclude them from the final program, use the NODEBUG option with BLink
or the equivalent if you use another linker.

The VERBOSE and TRACE arguments are for debugging and are undocumented.

The CLI stack should be set to at least 10000 bytes. See the Stack
command in the AmigaDOS manual.

Typing in the full command line can become tedious. It is suggested
that you adopt a consistent strategy for storing the source, symbol and
object files of a project. The author keeps each project in a seperate

OC.doc 5 / 23

directory and creates a sub-directory called "Code" to hold the symbol
and object files. It is suggested that all library modules’ symbol and
object files be kept in the "OLIB:" directory, which the compiler
automatically searches. A Shell alias can then be created to simplify
calling the compiler:

alias OComp OC SYM Code/ DST Code/ DEBUG []

A module can then be compiled by typing:

OComp <module>.mod

Other aliases can be created for compiling library modules and doing
batch compiles. See the file Oberon-A:S/Oberon-Startup for some
suggested aliases.

Examples:

OC DST OLIB: DEBUG Intuition.mod
OC NS SYM Code/ DST Code/ OCE.mod

1.6 Running OC from the Workbench

The compiler cannot be run from the Workbench. Sorry. This will come
in a future version.

1.7 Running OC from the FPE utility

A tool button in the FPE window can be configured to run the compiler
(see FPE.doc). In the button editor, set the Command field to the full
path name of the OC program. Set the Arguments field to "!F" plus any
options that are desired. Specify a console window as the Console
field. Put at least 10000 in the stack field.

For example:

Command="DH1:Oberon-A/OC"
Arguments="!F SYM OLIB: SYM Code/ DST Code/"
Console="CON:0/11/540/189/Compiling.../CLOSE/WAIT"
Stack=10000

To compile a source file:

1. select the module in the Module gadget.
2. select the file extension from the Files gadgets.
3. click on the tool button the compiler is bound to.
4. sit back and relax for a few seconds.

1.8 Language extensions supported by the compiler

OC.doc 6 / 23

There are two justifications for a compiler allowing deviations ←↩
from a

computer language’s formal definition. One is to "improve" the
language; the other is to provide machine-dependant facilities. With
one exception, all the language extensions supported by this compiler
are machine-dependant facilities. In order to use any of these
extensions, the global compiler switch $P must be set to FALSE (see

Compiler Switches
).

__

Escaped characters

Pointer variants

Assignable procedures

Amiga library functions

1.9 Escaped characters

The Oberon-A compiler allows the use of escaped characters in character
and string constants. An escaped character consists of a "\" character
followed by one or more characters. The "\" character indicates to the
compiler that the following character(s) has special meaning. The
meanings are:

\0 : insert a nul (NUL, 0X) character.
\b : insert a backspace (BS, 08X) character.
\t : insert a tab (HT, 09X) character.
\n : insert a newline (LF, 0AX) character.
\v : insert a vertical tab (VT, 0BX) character.
\f : insert a form-feed (FF, 0CX) character.
\r : insert a carriage return (CR, 0DX) character.
\xnn : insert the character with ASCII value nn hex.

For any other combination, the compiler ignores the "\" character and
inserts the following character. So, to insert a "\" character, use the
sequence "\". The most common use for this mechanism is to insert
formatting characters in strings to be output to the console, making the
task of console IO simpler.

1.10 Pointer variants

Oberon defines only one kind of pointer; this compiler provides two
variants. Pointer variants are indicated by alternatives to the normal
POINTER keyword. A normal, non-variant pointer is referred to here as an
Oberon pointer.

OC.doc 7 / 23

The first pointer variant is known as a CPointer. It is declared with
the CPOINTER keyword. It corresponds to the notion of a pointer used by
the C language. Such pointers are endemic in the Amiga operating system;
this is not surprising since it is largely written in that language.
They differ from normal Oberon pointers in two ways: they may have ANY
type as a base type; and there is no type tag associated with the object
they point to. This last feature means that they cannot be used in type
guard statements. Otherwise, they may be used in the same way as any
normal Oberon pointer. However, it is recommended that they only be used
when declaring objects required by a module providing an interface to
the Amiga operating system.

The second variant is known as a BPointer. It is declared with the
BPOINTER keyword. It represents a BCPL pointer, a curious object that is
found in many data structures used by AmigaDOS. It is a longword
pointer; that is, a byte address divided by 4. It is treated by the
compiler in much the same way as a CPointer. The compiler automagically
generates the code needed to convert between longword and byte addresses
when such a pointer is dereferenced.

Examples:

TYPE
Object = POINTER TO ObjDesc; (* An Oberon pointer *)
STRPTR = CPOINTER TO ARRAY 32767 OF CHAR; (* A CPointer *)
FileHandlePtr = BPOINTER TO FileHandleRec; (* A BPointer *)

The standard procedure NEW may be used to allocate memory for CPointer
and BPointer variables, as well as the SYSTEM.NEW procedure. Both will
handle the special requirements of BPointers transparently.
SYSTEM.DISPOSE can be used to free the memory once it is no longer
required.

You are also free to use the Amiga memory allocation functions such as
AllocMem() and FreeMem() with CPointer and BPointer variables. Note
that if you do this with BPointers, you will have to handle the
necessary shifting yourself.

DO NOT USE AMIGA MEMORY ALLOCATION FUNCTIONS WITH OBERON POINTERS. The
compiler makes assumptions about the structure of the memory allocated
to an Oberon pointer that are only valid if it is allocated with NEW.
The compiler will not allow you to use SYSTEM.NEW with Oberon pointers
where this is inappropriate.

1.11 Assignable procedures

Procedures that are to be assigned to procedure variables must be marked
with a "*" character, unless they are marked as exported. This tells
the compiler to treat them as if they were exported, without making them
visible outside the module. This mainly involves generating code to
save, set and restore register A4 as the global variable base pointer.
The mark character must be placed immediately after the PROCEDURE
keyword. For example:

OC.doc 8 / 23

PROCEDURE * Assignable;
^
Mark character

1.12 Amiga library functions

Amiga system software is accessed through shared code libraries. An
Amiga shared library consists of a block of variables and a table of
jump instructions. There is one of these jump instructions, known as a
function vector, for each function provided by the library. Each vector
is accessed by a negative offset (known as the function vector offset)
from the base of the library’s variables. A library function is called
by placing the address of the library variables in register A6 and
coding a "JSR offset(A6)" instruction, where "offset" is the vector
offset of the desired function. Parameters are placed in specific
registers before the function call and results are also returned in
registers. See the Amiga ROM Kernel Manual for an in-depth discussion
of this process.

The simplest method for a compiler to interface with Amiga library calls
is to require that the programmer declare a normal procedure and use
assembly language stubs or facilities such as SYSTEM.SETREG to set up
the parameters and make the call. This is an inefficient and
error-prone system and most recent compilers, including Oberon-A,
provide a means for describing library calls in such a way that the
compiler can generate the call directly.

The syntax for declaring Amiga library calls used by OC is similar to
the syntax for type-bound procedures in Oberon-2, which Amiga library
calls closely resemble.

The formal syntax is:

$ LibCallDeclaration = LibCallHeading ";"
$ LibCallHeading = PROCEDURE "-" Receiver identdef

[LibCallParameters] ["-"] integer.

The integer value is the library function vector offset. It may be
negative; if not, the compiler will negate it anyway.

$ Receiver = "(" ident ":" ident ")".

The first ident is a dummy. The second must be a type identifier that
has been declared earlier in the same module. The type must be a
CPOINTER TO RECORD (a CPointer to a record, see Pointer variants) and
should be an extension of the Exec.LibraryPtr type (Amiga Resources
are extensions of the Exec.NodePtr type).

$ LibCallParameters = "(" [LCPSection {";" LCPSection}] ")"
[":" qualident].

$ LCPSection = [VAR] ident RegSpec {"," ident RegSpec } ":"
FormalType.

$ RegSpec = "{" integer "}"

The integer in a RegSpec must be in the range 0 .. 15 and it

OC.doc 9 / 23

represents a CPU register number. The data registers D0 .. D7 are
numbered 0 .. 7; the address registers A0 .. A7 are numbered 8 .. 15.
It is used to indicate which register the corresponding parameter is
to be passed in.

A less formal example is:

PROCEDURE- (base : ExecBasePtr) OpenLibrary*
(libName {9} : ARRAY OF CHAR;

version {0} : Types.ULONG)
: Types.APTR;
- 552;

This defines the Amiga Exec library function OpenLibrary. It indicates
that it is bound to the ExecBasePtr type. It is marked for export. It
has two parameters: libName is an ARRAY OF CHAR whose address is to be
passed in register A1; version is a ULONG (effectively a LONGINT) to be
passed by value in register D0. The function returns an APTR value.
Its jump vector can be found 552 bytes before the library base address.

A library procedure is bound to a library base type (which is specified
in parentheses before the procedure name). This means that to call it
you must first declare a variable of the library base’s type and
initialise the variable with the address of the base of the
corresponding shared code library (use the Exec OpenLibrary function for
this). The procedure is then called as if it were a type-bound
procedure bound to the library base type.

Example:

Assuming that it has been declared in module Exec, along with a
variable called Base of type ExecBasePtr, a call of OpenLibrary ()
might look like this:

DiskFontBase := Exec.Base.OpenLibrary ("diskfont.library", 33);

Library procedures are NOT inherited by extensions of the type they are
bound to.

1.13 The pseudo-module SYSTEM

Every Oberon implementation includes a pseudo-module called ←↩
SYSTEM,

defined internally in the compiler. Its purpose is to provide machine-
dependant and low-level facilities that cannot otherwise be expressed in
the Oberon language. The SYSTEM module provided with Oberon-A is based
on the module defined for the Ceres compiler but contains several
differences.
__

Data types
Data types exported by SYSTEM

Memory management

OC.doc 10 / 23

Allocating and deallocating memory

Memory access
Peeking and poking and addresses

Logical operations
Bit twiddling

Inline code
Why bother with a compiler?

Miscellaneous
And all the rest...

Reference
Module SYSTEM Reference

1.14 Data types

All data types imported from the pseudo-module SYSTEM must be qualified
with the name of the module or an alias. For example, WORDSET must be
referred to as SYSTEM.WORDSET.

The SET type in Oberon-A is a 32 bit entity. However, many Amiga data
structures contain the equivalent of sets that are 8 and 16 bit
entities. These smaller sets are represented by the BYTESET (8 bit) and
WORDSET (16 bit) types exported by module SYSTEM. All the normal set
operations may be performed on these types. The different set types are
NOT compatible; sets of different types may not be mixed in expressions
or assigned. Set constants have their types automatically adjusted by
the compiler to conform to the type of set they being used with.

The operation of the LONG and SHORT standard procedures has been
extended to deal with set type conversions. The $P compiler switch must
be set to FALSE to get access to these extensions. The LONG procedure
will convert a BYTESET to a WORDSET and a WORDSET to a SET. The SHORT
procedure will convert a SET to a WORDSET and a WORDSET to a BYTESET.
This is the only supported method of mixing set types in assignments and
expressions.

Module SYSTEM exports three anonymous types, BYTE, WORD and LONGWORD.
These types are compatible with any other type with the same number of
bits. Any 8-bit type (SHORTINT, CHAR, and BOOLEAN) may be assigned to a
variable or parameter of type BYTE. In addition, any type may be passed
to parameter of the type ARRAY OF BYTE. Any 16-bit type (INTEGER and
WORDSET) may be assigned to a variable or parameter of type WORD. Any
32-bit type (LONGINT, SET, real types, pointers and procedures) may be
assigned to a variable or parameter of type LONGWORD.

Three pointer types are exported: PTR, CPTR and BPTR. These are used as
anonymous pointer types and are analogous to the LONGWORD type. Any
Oberon pointer may be assigned to a variable or parameter of type PTR.
Any CPointer may be assigned to a variable or parameter of type CPTR. In
addition, a CPTR may be assigned to any variable or parameter of a

OC.doc 11 / 23

CPointer type. Any BPointer may be assigned to a variable or parameter
of type BPTR. No other operations except comparisons with and
assignment of NIL are allowed for these types.

The VAL function procedure is used to cause the compiler to treat an
object of one type as if it had another type. This version of the
compiler does not insist that the two types have the same size. This
can cause unexpected problems with a big-endian processor like the
MC68000. For example, if you convert a 32 bit type to a 16 bit type,
you may end up accessing the _upper_ 16 bits of the original object when
you really wanted the _lower_ 16 bits.

1.15 Memory management

The SYSTEM.NEW procedure is used to allocate a block of memory with an
arbitrary size. Such a block does NOT have a type tag associated with
it, so do not use this procedure to allocate a record structure through
an Oberon pointer.

The DISPOSE procedure is used to explicitly free the memory associated
with any pointer variable. Great care must be taken with this
procedure, since it introduces the possibility of errors such as hanging
pointers that Oberon is attempting to eliminate. The only valid use for
DISPOSE is to free memory allocated to a CPointer or BPointer, or
allocated using SYSTEM.NEW. DISPOSE makes sure that it has been passed a
valid pointer and causes a processor trap to occur if it has not. It
can be quite slow to execute in some circumstances (especially when
freeing a pointer allocated in the middle of a large number of other
allocations).

1.16 Memory access

The ADR procedure is used to find the run-time address of any variable
or string constant. The result may be assigned to any CPointer. The
BIND procedure is used to assign the address of a record variable to a
CPointer variable while ensuring that the types of the two objects are
compatible.

The BIT procedure is used to test an individual bit at a given memory
location. Procedure GET is used to read a value at a given memory
location while PUT is used to write one.

1.17 Logical operations

LSH, ROT, LOR, AND and XOR perform logical operations on integers. LSH
is similar to ASH but performs a logical shift instead of an
arithmetical shift (the difference is in the treatment of the sign bit).
ROT performs a bitwise rotation of the argument. LOR performs a logical
OR, AND a logical AND and XOR a logical exclusive-OR. Note that these
operations do not change the type of the operand, unlike ASH which

OC.doc 12 / 23

promotes its parameter to a LONGINT.

1.18 Inline machine code

PUTREG is used to place a value in a specific CPU register. GETREG is
used to read the value in a register. INLINE is used to insert machine
code directly in the code buffer. It will output either a word or a
longword, depending on the size of the type of the argument. INLINE
will accept any number of parameters.

1.19 Miscellaneous

Procedure ARGS fetches the raw argument data passed to the program by
AmigaDOS or Workbench. This will either be a pointer to a string
containing the command line received from AmigaDOS, or a pointer to the
Workbench startup message. Procedure ARGLEN is used to determine which
it is. It returns -1 if the program was started by Workbench and the
ARGS result should be interpreted as a message pointer. Otherwise it
returns the length of the command line string and the ARGS result is a
pointer to that string. See the implementation of module Args for an
example of how to use these procedures.

Procedure SETCLEANUP is used to specify a procedure that is to be
executed after the program has formally ended, either normally or as the
result of a HALT or a processor trap. It returns the address of any
procedure that had previously been specified elsewhere in the program.
The new cleanup procedure should include a call to the previous
procedure. The cleanup procedure must be declared as:

PROCEDURE <name> (rc : LONGINT); (* any parameter name will do *)

When a cleanup procedure is called, its parameter will contain the
program’s return code. If the program was terminated by a HALT
statement, the parameter will be the value passed to HALT. Run-time
errors may result in specific return codes: see module Errors for
details. A procedure is not obliged to pass on the returnCode it
receives if it calls another cleanup procedure.

Procedure MOVE is used to copy an arbitrary sequence of bytes from one
memory location to another. It is able to deal correctly with
overlapping blocks.

1.20 Module SYSTEM Reference

Function Procedures

v stands for a variable, x, y, a and n for expressions and T for a
type. r stands for a register (0 <= r < 16).

Name Argument type Result type Function

OC.doc 13 / 23

ADR(v) any CPTR address of variable v, or
string constant v

AND(x, y) x, y: integer type larger type logical AND

BIND(T,v) T: CPointer type T address of variable v,
v: record type asserting its type is a

base type of T

BIT(a, n) a: LONGINT BOOLEAN Mem [a][n]
n: integer type

LSH(x, n) x, n: integer type type of x logical shift

OR(x, y) x, y: integer type larger type logical OR

ROT(x, n) x, n: integer type type of x rotation

SIZE(T) any type integer type size of T in bytes

VAL(T, x) T, x: any type T x interpreted as type T

XOR(x, y) x, y: integer type larger type logical exclusive OR

Proper Procedures

v stands for a variable, x, y, a and n for expressions and T for a
type.

Name Argument types Function

ARGLEN(v) v : LONGINT v := length of command line, or
-1 if the program started from
Workbench

ARGS(v) v : LONGINT v := command line or
workbench startup message

DISPOSE(v) any pointer type free memory allocated to v

GC none garbage collect memory

GET(a, v) a: LONGINT v := Mem [a]
v: any basic type

GETREG(r, v) r: register number v := R[r]
v: any basic type

INLINE(x1,..,xn) integer constant insert x1 .. xn into code

MOVE(v0, v1, n) v0, v1: any type assign first n bytes of v0
n: integer type to v1

NEW(v, n) v: any pointer type allocate block of n bytes and
n: integer type assign its address to v

OC.doc 14 / 23

PUT(a, x) a: LONGINT Mem [a] := x
x: any basic type

SETCLEANUP(p,v) p: parameterless make p the global cleanup
procedure procedure; v := the previous

v: parameterless cleanup procedure
procedure variable

SETREG(r, x) r: register number R[r] := x
x: any basic type

1.21 Controlling the compiler with switches

The behaviour of the compiler is to some extent under ←↩
programmer

control. This control is exercised through compiler switches.

Compiler switches are embedded in comments and consist of a "$"
character, a single capital letter and a "+", "-" or "=" character.
There must be no spaces between any of these characters. Any number of
switches may appear in the same comment. The switches are boolean
variables and their value is set by the trailing character, TRUE for
"+", FALSE for "-" and the default value for "=".

Module switches must be specified before any imports or declarations and
apply to the entire module. Global switches may be specified at any
point in the source file and apply until changed or until the end of the
module. Procedure switches apply to the first procedure body following
the switch; at the end of the procedure body the switch returns to its
default value. Note that it is procedure *body*, not procedure

declaration; watch out for this with nested procedures.
__

The currently supported switches are:

Module switches

$P
Portable code

$Z
Zero variables

Global switches

$I
Index checking

$L
Addressing global variables

$N

OC.doc 15 / 23

Checking memory allocations

$R
Range checking

$T
Type checking

$V
Overflow checking

Procedure switches

$D
Copying open arrays

1.22 Copying open arrays

(* $D+ enable copying of open arrays *)
(* $D- disable copying of open arrays *)

$D+ is the default. When TRUE, the compiler will generate code at the
entry to each procedure to make copies of any open array value
parameters. When FALSE, this code is suppressed. Use this switch for
efficiency if you know an open array value parameter will be strictly
read-only. Great care must be taken with this switch, since it
effectively converts value parameters into variable parameters,
bypassing the compiler’s normal safety checks. The programmer MUST make
sure not to make any assignments to such parameters, otherwise
undesirable side effects such as writing over string constants may
occur. This is a procedure switch.

1.23 Index checking

(* $I+ enable array index checking *)
(* $I- disable array index checking *)

$I+ is the default. When FALSE, the compiler will suppress the
generation of code to check that variables used to index arrays contain
legal values. This is a global switch.

1.24 Addressing global variables

(* $L- access global variables through A4 *)
(* $L+ use absolute long addressing for global variables *)

$L- is the default. When FALSE, the compiler generates code at the
entry to each exportable procedure to set up the A4 register to point to

OC.doc 16 / 23

the module’s global variables. The old value in A4 is saved and
restored on exit from the procedure. This allows the most efficient
access to global variables at the expense of several bytes (currently
10) of overhead per procedure. When TRUE, this code is suppressed and
global variables are accessed with less efficient absolute 32-bit
addresses. Set this switch to TRUE to minimise code size when you know
that no global variables will be accessed in a procedure, OR IN ANY
LOCAL PROCEDURE CALLED DIRECTLY OR INDIRECTLY BY IT. This is a global
switch.

1.25 Checking memory allocations

(* $N+ check for NIL result after call to NEW. *)
(* $N- ignore NIL result from call to NEW. *)

$N+ is the default. When TRUE, the compiler generates code after each
call to the NEW or SYSTEM.NEW procedures to check that the memory
allocation has succeeded. If not (the pointer returned is NIL), a
processor trap is generated. When FALSE, the check is omitted and it
becomes the programmer’s responsibility to check that the allocation
succeeded and take appropriate action if it did not. This is a global
switch.

1.26 Portable code

(* $P+ allow only portable code *)
(* $P- allow non-portable code *)

$P+ is the default. When TRUE, the compiler will only translate the
Oberon-2 language as defined in the Oberon-2 Report. When FALSE, the
compiler will recognise a number of language extensions (see

Language Extensions
). This is a module switch.

1.27 Range checking

(* $R+ enable range checking *)
(* $R- disable range checking *)

$R+ is the default. When TRUE, the compiler will generate code to check
that variables contain legal values for particular operations. This
includes the IN, INCL and EXCL set operations and type conversions using
CHR and SHORT. When FALSE, this code is suppressed. This is a global
switch.

[Not all of these checks have been implemented as yet. FJC]

OC.doc 17 / 23

1.28 Type checking

(* $T+ enable type checking *)
(* $T- disable type checking *)

$T+ is the default. When FALSE, the compiler will suppress the
generation of code to perform run-time type checks on variable record
parameters and pointers. This is a global switch.

1.29 Overflow checking

(* $V+ enable overflow checking *)
(* $V- disable overflow checking *)

$V+ is the default. When FALSE, the compiler will suppress the
generation of code to check for arithmetic overflow at run-time. This
is a global switch.

1.30 Zeroing variables

(* $Z- suppress zeroing of variables *)
(* $Z+ zero all global and local variables *)

$Z- is the default. When TRUE, the compiler generates code in the main
body of the module and on entry to each procedure to fill all variables
with zeroes. This guarantees that variables have a predictable initial
value. Numeric variables are set to zero; booleans are set to FALSE;
pointers are set to NIL; sets are empty, ie - {}. When FALSE, this code
is suppressed and variables have their values undefined. Why is the
default set to FALSE? Because in the language report the initial values
of variables are undefined and if you write programs that make
assumptions about initial values they will not be portable. The default
forces you to explicitly state that your program is relying on non-
standard behaviour from the compiler. This is a module switch.

1.31 Using the garbage collector

Oberon-2 was designed under the assumption that programs written in it
would be running in an environment that provided automatic garbage
collection of memory. This is the reason why it has a NEW standard
procedure but no DISPOSE. The Amiga’s operating system does not provide
this facility, so Oberon-A implements a garbage collector in the
run-time support code linked with every program. This garbage collector
must be used carefully, as it has the potential to free memory that is
still in use.

The garbage collector is invoked by calling the GC procedure in the
pseudo-module SYSTEM. When called, it works in two phases: a mark
phase and a scan phase. During the mark phase it traces all the global

OC.doc 18 / 23

pointer variables and marks the memory they point to. If the marked
memory contains other pointers, either as record fields or array
elements, these are also traced and marked. When the mark phase is
completed, the scan phase processes a list of all the memory blocks
allocated by the program, unmarking any marked blocks and freeing all
unmarked blocks.

The point in the program at which the garbage collector is called is
very important. The mark phase can only trace memory accessible from
GLOBAL pointer variables. LOCAL pointer variables inside procedures
cannot be traced. If such local variables are still active, the memory
allocated to them will be freed, almost certainly leading to a crash. To
avoid this, the programmer must ensure that the garbage collector is
only called at a point in the program where it is guaranteed that there
are no active local pointer variables. An ideal place for this would be
in the program’s main event loop (if it is a GUI program). A counter
variable should be used to limit the frequency at which the collector is
activated; activating it every cycle of the loop would bring the system
to a halt.

Another danger comes from using the SYSTEM.DISPOSE procedure. If there
is more than one reference to memory freed with this procedure, the
garbage collector will be tricked into believing that the memory is
still allocated, causing it to write all over memory it doesn’t own. If
you cannot guarantee that you know of all references to a dynamically
allocated variable and have assigned NIL to all of them, DO NOT USE
SYSTEM.DISPOSE. Assign NIL to any global pointer variable you are
finished with, and trust the garbage collector to handle any other
references. This kind of bug is very difficult to track down. When it
happened to the compiler, it took almost a week to find (and 30 seconds
to fix). Debuggers were useless, as they were being crashed by random
memory writes. You have been warned.

A number of library modules distributed with Oberon-A allocate memory in
their operations. For the reasons given above, most do not call
SYSTEM.DISPOSE. Module Files is a notable example, allocating from one
to four 1K buffers for every file opened. If you use such modules
intensively, you are more or less obliged to call the garbage collector
periodically to avoid running out of memory.

Garbage collection applies only to Oberon pointers. CPointer and
BPointer variables are not traced and the garbage collector ignores
them. If you use NEW or SYSTEM.NEW to allocate memory to such pointers,
you should use SYSTEM.DISPOSE to free them. This is equivalent to using
C’s malloc() and free() functions.

You are not forced to use either the garbage collector or
SYSTEM.DISPOSE. Any memory allocated by a program that is not explicitly
(with SYSTEM.DISPOSE) or implicitly (with the garbage collector) freed,
will be automatically returned to the system when the program ends. This
happens even if the program crashes due to a processor trap or is
summarily terminated with HALT or ASSERT. It also applies to memory
allocated to CPointer and BPointer variables with NEW and SYSTEM.NEW.
IT DOES NOT APPLY TO MEMORY ALLOCATED WITH THE AMIGA MEMORY ALLOCATION
FUNCTIONS. The run-time system cannot track such memory and if it is not
explicitly freed it will remain allocated and cause a memory leak.

OC.doc 19 / 23

1.32 Handling run-time errors

The compiler generates code fragments to check for a number of errors
that may occur at run-time. These include arithmetic overflows, failed
type guards, array index errors, etc. They can be enabled and disabled
with compiler switches; they are all enabled by default. Typically
run-time errors produce a processor trap with a TRAP or TRAPV
instruction. The run-time support code built into every Oberon-A
program contains a trap handler which intercepts all compiler-generated
traps and several others such as divide-by-zero. The default trap
handler has the same effect as a HALT statement, causing the program to
terminate. Any cleanup procedures installed with SYSTEM.SETCLEANUP will
be executed and all memory allocated with NEW or SYSTEM.NEW will be
freed. The return code will be set to the trap number + 100.

Module Errors gives an example of a cleanup procedure which checks the
return code and puts up a requester describing the error. This example
should give you enough information to write your own replacement, or a
supplementary procedure that catches return codes it doesn’t understand.
If you know what you are doing, you could install your own trap handler
through the tcTrapCode field in the program’s Task structure. See the
Amiga RKM for details.

1.33 Error reports produced by the compiler

Any errors detected by the compiler are listed in the file
"Oberon.errors". This will be placed in the T: directory if possible,
otherwise in the current directory. Errors are listed one per line.
Each report takes the format:

line <line#>, col <column#>: err = <error#>

Lines and columns are numbered starting at 1. The meaning of each error
number is listed in the file ErrorCodes.doc.

1.34 Implementation of basic types

The Oberon Report leaves the precise format and size of most basic types
up to individual implementations. The relevant data for Oberon-A are:

Type Size MIN MAX
---- ---- --- ---

SHORTINT 8 bits /1 byte -128 127
INTEGER 16 bits/2 bytes -32768 32767
LONGINT 32 bits/4 bytes -2147483648 2147483647
REAL 32 bits/4 bytes -9.22337177E18 9.22337177E18
LONGREAL 32 bits/4 bytes -9.22337177E18 9.22337177E18
CHAR 8 bits /1 byte 0X 255X
BYTE 8 bits /1 byte 0 255
SYSTEM.BYTESET 8 bits /1 byte 0 7
SYSTEM.WORDSET 16 bits/2 bytes 0 15

OC.doc 20 / 23

SET 32 bits/4 bytes 0 31
Pointers 32 bits/4 bytes N/A N/A

Note that REAL and LONGREAL are identical in this implementation. They
both conform to the Motorola Fast Floating Point standard. In a future
version, LONGREAL will be re-implemented as an IEEE double-precision
real. REAL may also be re-implemented as an IEEE single-precision real.
I will be guided in this by the compiler’s users.

1.35 Limits built in to the compiler

* The compiler cannot evaluate constant expressions that contain REAL or
LONGREAL values. You can still have real literals, just no
arithmetic.

* The code generated for a module cannot be greater than 32K in size.
This limit is inherent in the addressing model used for generating
machine code. Split large modules into smaller pieces.

* No more than 4000 bytes of string literals or 1000 bytes of type tag
data may be generated for a module. These limits can be increased by
changing two constants in module OCC and recompiling it; the absolute
maximums are 32K.

* There is a limit of about 80K on the size of the buffer used to store
names. This is dynamically allocated and grows as needed, so there is
no wasted RAM. The most I have seen used for this is about 60K.

* No more than 32K of local variables can be declared for a procedure.
What do you mean you want more? Use dynamic allocation.

* There is no limit on the size of a module’s global variables but
variables more than 32K from the module’s variable base will be less
efficient to access.

* An array type may not have more than 32K elements (however, it may be
larger than 32K bytes). This limit will disappear in a future
version.

* Identifiers and string literals cannot be more than 255 characters
long. This is primarily a limit imposed by module OCS, but increasing
it may affect assumptions made in other parts of the compiler. The
original limit for identifiers was 31 characters and this may still
lurk in dark corners of the source code. Of course, if you need
identifiers longer than this, stop writing variable names in German
:-). Module names are limited to 26 characters. This limit is
imposed by AmigaDOS.

* String literals longer than 1 character cannot be aliased if they are
imported from another module. By this I mean, you cannot declare a
constant such as:

CONST Alias = AnotherModule.StringConstant;

where StringConstant is a string literal longer than 1 character. This

OC.doc 21 / 23

limit will probably disappear in a future version. It will happen
quicker if people complain :-).

* The register allocation strategy implemented by the compiler prevents
the use of Amiga shared library functions that pass parameters in the
A4 register. Those that use the A3 register may also pose some
difficulties. If the actual parameter is an expression rather than a
simple variable, you may need to assign it to a temorary variable and
pass the temporary to the parameter. This will be fixed in a future
release.

* There are a number of arbitrary limits placed on the number of objects
such as exported types, imported modules and the like. These limits
allow the use of arrays for internal data structures, which are much
more efficient than dynamically allocated lists. Most of these limits
have been greatly increased from those in the Ceres compiler. If you
still manage to exceed such a limit, a compiler error will be reported
and you should easily be able to determine which constant to increase
to get around it.

* The compiler needs at least 10000 bytes of stack and up to 500K of
free RAM to run.

1.36 Who is responsible for THIS?

OC was ported to the Amiga by Frank Copeland. It is based on a compiler
written by Niklaus Wirth.

All bug reports, suggestions and comments can be directed to:

Email : oberon@wossname.apana.org.au

Snail Mail :

Frank J Copeland
PO BOX 236
RESERVOIR VIC 3073
AUSTRALIA

Remember the J. It saves a lot of confusion at my end :-).

1.37 Reporting bugs and suggestions

This version of OC is a beta-test version. That means that it is
basically complete, but has not been rigorously tested. Bug fixes and
suggestions from users of this version will be incorporated in future
versions. You are encouraged to report any and all bugs you find, as
well as any comments or suggestions for improvements you may have.

Before reporting a suspected bug, check the file ToDo.doc to see if it
has already been noted. If it is a new insect, clearly describe its
behaviour including the actions necessary to make it repeatable.

OC.doc 22 / 23

Indicate in your report which version of OC you are using. Include an
example of a program or short fragment of code that demonstrates the
bug.

I am especially interested in the following areas:

* Compatibility with different versions of the Amiga hardware and
operating system. So far OC has only operated on a stock A500 with
AmigaDOS 2.05 and a 20MB hard disk.

* How good/useful/helpful/complete the documentation is.

* How suitable OC is for use by programmers with varying levels of
experience, from beginners to hackers.

* Departures from the language specification.

* Extensions to the language supported by the compiler.

* Memory management. I am unable to use Enforcer or similar
utilities on my A500, so I would like people who can to report any
Enforcer hits they get. I am also concerned about possibly
excessive memory fragmentation caused by the run-time memory
allocator.

1.38 Who did what and why

OC is a port of a compiler written for the Ceres workstation by Niklaus
Wirth. The book "Project Oberon" written by Wirth and Jürg Gutknecht
contains a description of this compiler and the full source code for it.
The original source can also be obtained by anonymous ftp from
neptune.inf.ethz.ch. Many thanks to Professor Wirth for making this
source code available.

The machine code generator for early versions of the compiler was a port
of part of Charlie Gibb’s A68K assembler. This code is no longer part of
the compiler, but it was extremely useful in the early stages of
development and debugging.

Part of the run-time library (the 32 bit arithmetic) is taken from the
Sozobon C compiler and is:

Copyright (c) 1988 by Sozobon, Limited. Author: Johann Ruegg

All the source code for OC was created using Matt Dillon’s DME editor.

1.39 Release history

0.0 The initial port to the Amiga, written in Modula 2 and compiled by
the Benchmark compiler. Implemented the Oberon dialect. Never
released. Started in February 1993.

OC.doc 23 / 23

0.1 The initial conversion from Modula 2 to Oberon, compiled by the
v0.0 compiler. Never released.

0.2 - 0.3 Bug fixes and upgrades. Never released.

1.0 Start of revision control. Upgrades and bug fixes. Never released.

2.0 First public release. Compiler upgraded to Oberon-2. Released in
May 1994.

3.0 * Changed command line arguments:
- Options now must come first;
- Multiple filename arguments allowed.

* Batch compiles implemented.

* OLIB: is now the default symbol file search path.

* Error files are output in the current directory with the name
"<module>.err".

* [bug] Enforcer hit caused when no DST parameter was specified

* [bug] Same error code (#228) used for different errors.

	OC.doc
	OC.doc
	What is OC?
	Distribution and Copyright
	System requirements
	Running OC from the CLI
	Running OC from the Workbench
	Running OC from the FPE utility
	Language extensions supported by the compiler
	Escaped characters
	Pointer variants
	Assignable procedures
	Amiga library functions
	The pseudo-module SYSTEM
	Data types
	Memory management
	Memory access
	Logical operations
	Inline machine code
	Miscellaneous
	Module SYSTEM Reference
	Controlling the compiler with switches
	Copying open arrays
	Index checking
	Addressing global variables
	Checking memory allocations
	Portable code
	Range checking
	Type checking
	Overflow checking
	Zeroing variables
	Using the garbage collector
	Handling run-time errors
	Error reports produced by the compiler
	Implementation of basic types
	Limits built in to the compiler
	Who is responsible for THIS?
	Reporting bugs and suggestions
	Who did what and why
	Release history

